Invariant measures for interval translations and some other piecewise continuous maps

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absolutely continuous invariant measures for piecewise real-analytic expanding maps on the plane

We prove the existence of absolutely continuous invariant measures for piecewise real-analytic expanding maps on bounded regions in the plane.

متن کامل

Regularity of Absolutely Continuous Invariant Measures for Piecewise Expanding Unimodal Maps

Let f : [0, 1]→ [0, 1] be a piecewise expanding unimodal map of class C, with k ≥ 1, and μ = ρdx the (unique) SRB measure associated to it. We study the regularity of ρ. In particular, points N where ρ is not differentiable has zero Hausdorff dimension, but is uncountable if the critical orbit of f is dense. This improves on a work of Szewc (1984). We also obtain results about higher order diff...

متن کامل

Invariant Measures for Interval Maps with Critical Points and Singularities

We prove that, under a mild summability condition on the growth of the derivative on critical orbits any piecewise monotone interval map possibly containing discontinuities and singularities with infinite derivative (cusp map) admits an ergodic invariant probability measures which is absolutely continuous with respect to Lebesgue measure.

متن کامل

Roots of Continuous Piecewise Monotone Maps of an Interval

We shall consider slightly more general problems. Namely, we shall investigate the existence of continuous: piecewise monotone, piecewise strictly monotone, and piecewise linear n-th roots of interval maps which have a continuous n-th root. Here by an n-th root of f we mean a map g such that f = g (g is the n-th iterate of g). A continuous map f : I → J , where I, J are closed intervals, is pie...

متن کامل

Conformal measures for multidimensional piecewise invertible maps

Given a piecewise invertible map T : X → X and a weight g : X →]0,∞[, a conformal measure ν is a probability measure on X such that, for all measurable A ⊂ X with T : A→ TA invertible, ν(TA) = λ ∫

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Modelling of Natural Phenomena

سال: 2020

ISSN: 0973-5348,1760-6101

DOI: 10.1051/mmnp/2019041